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We investigate theoretically radio-frequency spectroscopy of weakly bound molecules in an ultracold spin-
orbit-coupled atomic Fermi gas. We consider two cases with either equal Rashba and Dresselhaus coupling or pure
Rashba coupling. The former system has been realized very recently at Shanxi University [Wang et al., Phys. Rev.
Lett. 109, 095301 (2012)] and MIT [ Cheuk et al., Phys. Rev. Lett. 109, 095302 (2012)]. We predict realistic radio-
frequency signals for revealing the unique properties of anisotropic molecules formed by spin-orbit coupling.
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I. INTRODUCTION

The coupling between the spin of electrons to their orbital
motion, the so-called spin-orbit coupling, lies at the heart
of a variety of intriguing phenomena in diverse fields of
physics. It is responsible for the well-known fine structure
of atomic spectra in atomic physics, as well as the recently
discovered topological state of matter in solid-state physics,
such as topological insulators and superconductors [1,2]. For
electrons, spin-orbit coupling is a relativistic effect and, in
general, not strong. Most recently, in a milestone experiment
at the National Institute of Standards and Technology (NIST),
synthetic spin-orbit coupling was created and detected in
an atomic Bose-Einstein condensate (BEC) of 87Rb atoms
[3]. Using the same experimental technique, noninteracting
spin-orbit-coupled Fermi gases of 40K atoms and 6Li atoms
have also been realized, respectively, at Shanxi University [4]
and at Massachusetts Institute of Technology (MIT) [5]. These
experiments have paved an entirely new way to investigate the
celebrated effects of spin-orbit coupling.

Owing to the high controllability of ultracold atoms in
atomic species, interactions, confining geometry and purity,
the advantage of using synthetic spin-orbit coupling is appar-
ent: (i) The strength of spin-orbit coupling between ultracold
atoms can be made very strong, much stronger than that
in solids. (ii) New bosonic topological states that have no
analogy in solid-state systems may be created. (iii) Ultracold
atoms are able to realize topological superfluids that are yet
to be observed in the solid state. (iv) Strongly correlated
topological states can be readily realized, whose understanding
remains a grand challenge. At the moment, there has been
a flood of theoretical work on synthetic spin-orbit coupling
in BECs [6–18] and atomic Fermi gases [19–31], addressing
particularly new exotic superfluid phases arising from spin-
orbit coupling [8,9,13,23].

In this paper, we investigate theoretically momentum-
resolved radio-frequency (rf) spectroscopy of an interacting
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two-component atomic Fermi gas with spin-orbit coupling.
The interatomic interactions can be easily manipulated using a
Feshbach resonance in 40K or 6Li atoms [32]. In our previous
work, we have shown that weakly bound molecules with
anisotropic mass and anisotropic wave function (in momentum
space) may be formed due to spin-orbit coupling [23] (see also
the work in Refs. [19,22]). Here, we aim to predict observable
rf signals of these anisotropic molecules, using the known
two-particle wave function [22]. Our calculation is based on
Fermi’s golden rule for the bound-free transition of a stationary
molecule [33]. We consider two kinds of spin-orbit coupling:
(1) the equal Rashba and Dresselhaus coupling λkxσy , which
has been realized experimentally at Shanxi University [4] and
MIT [5], and (2) the pure Rashba coupling λ(kyσx − kxσy),
which is yet to be realized. Here σx and σy are the Pauli
matrices, kx and ky are momenta, and λ is the strength of the
spin-orbit coupling. The latter case with pure Rashba spin-orbit
coupling is of particular theoretical interest, since molecules
induced by spin-orbit coupling exist even for a negative s-wave
scattering length above Feshbach resonances [19,22,23].

Explicitly we calculate the molecular response in the radio-
frequency spectroscopy. These results should be quantitatively
reliable in the deep BEC limit with negligible number of atoms,
i.e., in the interaction parameter regime with 1/(kF as) > 2,
where kF and as are the Fermi wavelength and s-wave
scattering length, respectively. However, in a real experiment,
in order to maximize the spin-orbit effect, it is better to work
closer to Feshbach resonances, i.e., 1/(kF as) ∼ 0.5. Moreover,
the typical temperature in experiment is about 0.6TF , where
TF is the Fermi temperature. Thus, at finite temperatures
the spin-orbit-coupled Fermi gas consists of both atoms and
weakly bound molecules, which may strongly interact with
each other. Our prediction for the molecular response is still
qualitatively valid, with the understanding that there would be
an additional pronounced atomic response in the rf spectra.

The paper is structured as follows. In the next section, we
discuss briefly the rf spectroscopy and Fermi’s golden rule for
the calculation of rf transfer strength. In Sec. III, we consider
the experimental case of equal Rashba and Dresselhaus spin-
orbit coupling. We introduce first the model Hamiltonian
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and the single-particle and two-particle wave functions. We
then derive an analytic expression for momentum-resolved
rf transfer strength following Fermi’s golden rule. It can be
written explicitly in terms of the two-body wave function. We
discuss in detail the distinct features of momentum-resolved
rf spectroscopy in the presence of spin-orbit coupling, with
the use of realistic experimental parameters. In Sec. IV, we
consider an atomic Fermi gas with pure Rashba spin-orbit
coupling, a system anticipated to be realized in the near future.
Finally, in Sec. V, we conclude and make some final remarks.

II. RADIO-FREQUENCY SPECTROSCOPY
AND FERMI’S GOLDEN RULE

Radio-frequency spectroscopy, including momentum-
resolved rf spectroscopy, is a powerful tool to characterize
interacting many-body systems. It has been widely used to
study fermionic pairing in a two-component atomic Fermi gas
near Feshbach resonances when it crosses from a Bardeen-
Cooper-Schrieffer (BCS) superfluid of weakly interacting
Cooper pairs into a BEC of tightly bound molecules [34–36].
Most recently, it has also been used to detect new quasiparticles
known as repulsive polarons [37,38], which occur when
“impurity” fermionic particles interact repulsively with a
fermionic environment.

The underlying mechanics of rf spectroscopy is simple. For
an atomic Fermi gas with two hyperfine states, denoted as
|1〉 = |↑〉 and |2〉 = |↓〉, the rf field drives transitions between
one of the hyperfine states (i.e., |↓〉) and an empty hyperfine
state |3〉 which lies above it by an energy h̄ω3↓ due to the
magnetic field splitting in bare atomic hyperfine levels. The
Hamiltonian for rf coupling may be written as

Vrf = V0

∫
dr[ψ†

3 (r) ψ↓ (r) + ψ
†
↓ (r) ψ3 (r)], (1)

where ψ
†
3 (r) [ψ†

↓ (r)] is the field operator which creates an atom
in |3〉 (|↓〉) at the position r, and V0 is the strength of the rf drive
and is related to the Rabi frequency ωR with V0 = h̄ωR/2.

For the rf spectroscopy of weakly bound molecules that
is of interest in this work, a molecule is initially at rest in
the bound state |�2B〉 with energy E0 = −εB . Here εB is the
binding energy of the molecules. A radio-frequency photon
with energy h̄ω will break the molecule and transfer one of
the atoms to the third state |3〉. In the case that there is no
interaction between the state |3〉 and the spin-up and spin-
down states, the final state |�f 〉 involves a free atom in the
third state and a remaining atom in the system. According
to Fermi’s golden rule, the rf strength of breaking molecules
and transferring atoms is proportional to the Franck-Condon
factor [33]

F (ω) = |〈�f |Vrf|�2B〉|2δ
[
ω − ω3↓ − Ef − E0

h̄

]
, (2)

where the Dirac δ function ensures energy conservation and Ef

is the energy of the final state. The integrated Franck-Condon
factor over frequency should be unity

∫ +∞
−∞ F (ω) dω = 1, if

we can find a complete set of final states for rf transition.
Hereafter, without any confusion we shall ignore the energy
splitting in the bare atomic hyperfine levels and set ω3↓ = 0.
To calculate the Franck-Condon factor Eq. (2), it is crucial to

understand the initial two-particle bound state |�2B〉 and the
final two-particle state |�f 〉.

III. EQUAL RASHBA AND DRESSELHAUS
SPIN-ORBIT COUPLING

Let us first consider a spin-orbit-coupled atomic Fermi gas
realized recently at Shanxi University [4] and at MIT [5].
In these two experiments, the spin-orbit coupling is induced
by the spatial dependence of two counterpropagating Raman
laser beams that couple the two spin states of the system. Near
Feshbach resonances, the system may be described by a model
Hamiltonian H = H0 + Hint, where

H0 =
∑

σ

∫
dr ψ†

σ (r)
h̄2k̂2

2m
ψσ (r)

+
∫

dr
[
ψ

†
↑ (r)

(
	R

2
ei2kRx

)
ψ↓ (r) + H.c.

]
(3)

is the single-particle Hamiltonian and

Hint = U0

∫
dr ψ

†
↑ (r) ψ

†
↓ (r) ψ↓ (r) ψ↑ (r) (4)

is the interaction Hamiltonian describing the contact inter-
action between two spin states. Here, ψ†

σ (r) is the creation
field operator for atoms in the spin state σ , h̄k̂ ≡ −ih̄∇
is the momentum operator, 	R is the coupling strength of
Raman beams, kR= 2π/λR is determined by the wavelength
λR of two Raman lasers, and therefore 2h̄kR is the momentum
transfer during the two-photon Raman process. The interaction
strength is denoted by the bare interaction parameter U0. It
should be regularized in terms of the s-wave scattering length
as , i.e., 1/U0 = m/(4πh̄2as) − ∑

k m/(h̄2k2).
To solve the many-body Hamiltonian equation (3), it is

useful to remove the spatial dependence of the Raman coupling
term, by introducing the following new field operators ψ̃σ via

ψ↑ (r) = e+ikRxψ̃↑ (r) , (5)

ψ↓ (r) = e−ikRxψ̃↓ (r) . (6)

With the new field operators ψ̃σ , the single-particle
Hamiltonian then becomes

H0 =
∑

σ

∫
dr ψ̃†

σ (r)
h̄2(k̂ ± kRex)2

2m
ψ̃σ (r)

+ 	R

2

∫
dr[ψ̃†

↑ (r) ψ̃↓ (r) + H.c.], (7)

where in the first term on the right-hand side of the equation
we take “+” for spin-up atoms and “−” for spin-down atoms.
The form of the interaction Hamiltonian is invariant:

Hint = U0

∫
dr ψ̃

†
↑ (r) ψ̃

†
↓ (r) ψ̃↓ (r) ψ̃↑ (r) . (8)

However, the rf Hamiltonian acquires an effective momentum
transfer kRex ,

Vrf = V0

∫
dr[e−ikRxψ

†
3 (r) ψ̃↓ (r) + H.c.]. (9)
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For later reference, we shall rewrite the rf Hamiltonian in terms
of field operators in the momentum space,

Vrf = V0

∑
q

(c†q−kRex ,3
cq↓ + H.c.), (10)

where ψ
†
3 (r) ≡ ∑

q c
†
q3e

iq·r and ψ̃↓ (r) ≡ ∑
q cq↓eiq·r. Here-

after, we shall denote ck3 and ckσ as the field operators (in the
momentum space) for atoms in the third state and in the spin
state σ , respectively.

A. Single-particle solution

Using the Pauli matrices, the single-particle Hamiltonian
takes the form

H0 =
∫

dr[ψ̃†
↑ (r) ,ψ̃

†
↓ (r)]

×
[

h̄2
(
k2
R + k2

)
2m

+ hσx + λkxσz

] [
ψ̃↑ (r)

ψ̃↓ (r)

]
, (11)

where for convenience we have defined the spin-orbit coupling
constant denoted as λ ≡ h̄2kR/m and an “effective” Zeeman
field h ≡ 	R/2. This Hamiltonian is equivalent to the one with
equal Rashba and Dresselhaus spin-orbit coupling, λkxσy . To
see this, let us take the second transformation and introduce
new field operators �σ (r) via

ψ̃↑(r) = 1√
2

[�↑(r) − i�↓(r)], (12)

ψ̃↓(r) = 1√
2

[�↑(r) + i�↓(r)]. (13)

Using these new field operators, the single-particle
Hamiltonian now takes the form

H0 =
∫

dr[�†
↑ (r) ,�

†
↓ (r)]

×
[

h̄2
(
k2
R + k2

)
2m

+ λkxσy + hσz

][
�↑ (r)

�↓ (r)

]
, (14)

which is precisely the Hamiltonian with equal Rashba and
Dresselhaus spin-orbit coupling.

The single-particle Hamiltonian equation (11) can be
diagonalized to yield two eigenvalues:

Ek± = h̄2k2
R

2m
+ h̄2k2

2m
±

√
h2 + λ2k2

x. (15)

Here “±” stands for the two helicity branches. The single-
particle eigenstates or the field operators in the helicity basis
take the form

ck+ = +ck↑ cos θk + ck↓ sin θk, (16)

ck− = −ck↑ sin θk + ck↓ cos θk, (17)

where

θk = arctan
[
(
√

h2 + λ2k2
x − λkx)/h

]
> 0 (18)

is an angle determined by h and kx . Note that,

cos2 θk = 1

2

(
1 + λkx√

h2 + λ2k2
x

)
, (19)

sin2 θk = 1

2

(
1 − λkx√

h2 + λ2k2
x

)
. (20)

Note also that the minimum energy of the single-particle
energy dispersion is given by [24]

Emin = h̄2k2
R

2m
− mλ2

2h̄2 − h̄2h2

2mλ2
= − h̄2h2

2mλ2
, (21)

if h < mλ2/h̄2.

B. The initial two-particle bound state |�2B〉
In the presence of spin-orbit coupling, the wave function

of the initial two-body bound state has both spin-singlet and
-triplet components [19,22,23]. For the Rashba spin-orbit
coupling, the two-body wave function has been explicitly
constructed by Yu and Zhai [22]. Here, we apply their
construction to the case with equal Rashba and Dresselhaus
spin-orbit coupling. The wave function at zero center-of-mass
momentum |�2B〉 may be written as [22]

|�2B〉 = 1√
2C

∑
k

[ψ↑↓(k)c†k↑c
†
−k↓ + ψ↓↑(k)c†k↓c

†
−k↑

+ψ↑↑(k)c†k↑c
†
−k↑ + ψ↓↓(k)c†k↓c

†
−k↓]|vac〉, (22)

where c
†
k↑ and c

†
k↓ are creation field operators of spin-

up and spin-down atoms with momentum k, and C ≡∑
k[|ψ↑↓(k)|2 + |ψ↓↑(k)|2 + |ψ↑↑(k)|2 + |ψ↓↓(k)|2] is the

normalization factor. From the Schrödinger equation (H0 +
Hint) |�2B〉 = E0 |�2B〉, we can straightforwardly derive the
following equations for coefficients ψσσ ′ appearing in the
above two-body wave function [22]:

[
E0 −

(
h̄2k2

R

m
+ h̄2k2

m
+ 2λkx

)]
ψ↑↓ (k) = +U0

2

∑
k′

[ψ↑↓(k′) − ψ↓↑(k′)] + hψ↑↑ (k) + hψ↓↓ (k) , (23)

[
E0 −

(
h̄2k2

R

m
+ h̄2k2

m
− 2λkx

)]
ψ↓↑ (k) = −U0

2

∑
k′

[ψ↑↓(k′) − ψ↓↑(k′)] + hψ↑↑ (k) + hψ↓↓ (k) , (24)

[
E0 −

(
h̄2k2

R

m
+ h̄2k2

m

)]
ψ↑↑ (k) = hψ↑↓ (k) + hψ↓↑ (k) , (25)

[
E0 −

(
h̄2k2

R

m
+ h̄2k2

m

)]
ψ↓↓ (k) = hψ↑↓ (k) + hψ↓↑ (k) , (26)
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where E0 = −εB < 0 is the energy of the two-body bound
state. Let us introduce Ak ≡ −εB − (h̄2k2

R/m + h̄2k2/m) < 0
and different spin components of the wave functions,

ψs (k) = 1√
2

[ψ↑↓ (k) − ψ↓↑ (k)], (27)

ψa (k) = 1√
2

[ψ↑↓ (k) + ψ↓↑ (k)]. (28)

It is easy to see that

ψ↑↑ (k) =
√

2h

Ak
ψa (k) , (29)

ψ↓↓ (k) =
√

2h

Ak
ψa (k) , (30)

ψa (k) = λkx

[
1

Ak − 2h
+ 1

Ak + 2h

]
ψs (k) , (31)

and [
Ak − 4λ2k2

x

Ak − 4h2/Ak

]
ψs (k) = U0

∑
k′

ψs

(
k′) . (32)

As required by the symmetry of fermionic systems,
the spin-singlet wave function ψs (k) is an even func-
tion of the momentum k, i.e., ψs(−k) = ψs(k), and the
spin-triplet wave functions are odd functions, satisfying
ψa (−k) = −ψa (k), ψ↑↑ (−k) = −ψ↑↑ (k), and ψ↓↓ (−k) =
−ψ↓↓ (k). The un-normalized wave function ψs (k) = [Ak −
4λ2k2

x/(Ak − 4h2/Ak)]−1 is given by

ψs (k) = 1

h2 + λ2k2
x

[
h2

Ak
+ λ2k2

xAk

A2
k − 4

(
h2 + λ2k2

x

)
]

. (33)

Using Eq. (32) and un-normalized wave function ψs (k), the
bound-state energy E0 or the binding energy εB is determined
by U0

∑
k ψs(k) = 1, or more explicitly,

m

4πh̄2as

−
∑

k

[
ψs (k) + m

h̄2k2

]
= 0. (34)

Here we have replaced the bare interaction strength U0 by the
s-wave scattering length as using the standard regularization
scheme mentioned earlier. The normalization factor of the total
two-body wave function is given by

C =
∑

k

|ψs (k)|2
[

1 + 2λ2k2
x

(Ak − 2h)2 + 2λ2k2
x

(Ak + 2h)2

]
. (35)

C. The final two-particle state |� f 〉
Let us consider now the final state |�f 〉. For this purpose,

it is useful to calculate

Vrf |�2B〉 = V0

∑
q

c
†
−q−kRex ,3

c−q↓ |�2B〉 (36)

and then determine possible final states. It can be readily seen
that

Vrf |�2B〉 = − V0√
2C

∑
q

c
†
−q−kRex ,3

{[ψ↑↓(q) − ψ↓↑(−q)]c†q↑

+ [ψ↓↓(q) − ψ↓↓(−q)]c†q↓}|vac〉. (37)

Rewriting ψ↑↓and ψ↓↑ in terms of ψs and ψa as shown in
Eqs. (27) and (28), and exploiting the parity of the wave
functions, we obtain a general result valid for any type of
spin-orbit coupling,

Vrf|�2B〉 = −
√

1

CV0

∑
q

c
†
−q−kRex ,3

{[ψs(q)

+ψa(q)]c†q↑ +
√

2ψ↓↓(q)c†q↓}|vac〉. (38)

To proceed, we need to rewrite the field operators c
†
q↑ and c

†
q↓

in terms of creation operators in the helicity basis. For the case
of equal Rashba and Dresselhaus spin-orbit coupling, using
Eqs. (16) and (17), we find that

c
†
q↑ = cos θqc

†
q+ − sin θqc

†
q−, (39)

c
†
q↓ = sin θqc

†
q+ + cos θqc

†
q−. (40)

Thus, we obtain

Vrf |�2B〉 = −
√

1

CV0

∑
q

c
†
−q−kRex ,3

[sq+c
†
q+ − sq−c

†
q−] |vac〉,

(41)

where

sq+ = [ψs (q) + ψa (q)] cos θq +
√

2ψ↓↓ (q) sin θq, (42)

sq− = [ψs (q) + ψa (q)] sin θq −
√

2ψ↓↓ (q) cos θq. (43)

Equation (41) can be interpreted as follows. The rf photon
breaks a stationary molecule and transfers a spin-down atom
to the third state. We have two possible final states: (1) we may
have two atoms in the third state and the upper helicity state,
respectively, with a possibility of |sq+|2/C; and (2) we may
also have a possibility of |sq−|2/C for having two atoms in the
third state and the lower helicity state, respectively.

D. Momentum-resolved rf spectroscopy

Taking into account these two final states and using Fermi’s
golden rule, we end up with the following expression for the
Franck-Condon factor:

F (ω) = 1

C
∑

q

[
s2

q+δ

(
ω − Eq+

h̄

)
+ s2

q−δ

(
ω − Eq−

h̄

)]
,

(44)

where

Eq± ≡ εB + h̄2
(
k2
R + q2

)
2m

±
√

h2 + λ2q2
x + h̄2 (q + kRex)2

2m
.

(45)

The two Dirac δ functions in Eq. (44) are due to energy
conservation. For example, the energy of the initial state (of
the stationary molecule) is E0 = −εB , while the energy of the
final state is h̄2(q + kRex)2/(2m) for the free atom in the third
state and h̄2(k2

R + q2)/(2m) + √
h2 + λ2q2

x for the remaining
atom in the upper branch. Therefore, the rf energy h̄ω required
to have such a transfer is given by Eq+, as shown by the first
Dirac δ function. It is easy to check that the Franck-Condon
factor is integrated to unity,

∫ +∞
−∞ F (ω) = 1.
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Experimentally, in addition to measuring the total number
of atoms transferred to the third state, which is proportional
to F (ω), we may also resolve the transferred number of
atoms for a given momentum or wave vector kx . Such a
momentum-resolved rf spectroscopy has already been imple-
mented for a noninteracting spin-orbit-coupled atomic Fermi
gas at Shanxi University and at MIT. Accordingly, we may
define a momentum-resolved Franck-Condon factor

F (kx,ω) = 1

C
∑
q⊥

[
s2

q+δ

(
ω − Eq+

h̄

)
+ s2

q−δ

(
ω − Eq−

h̄

)]
,

(46)

where the summations are now over the wave vector q⊥ ≡
(qy,qz) and we have defined kx ≡ qx + kR by shifting the
wave vector qx by an amount kR . This shift is due to the
gauge transformation used in Eqs. (5) and (6). With the help of
the two Dirac δ functions, the summation over q⊥ may be done
analytically. We finally arrive at

F (kx,ω) = m

8π2h̄C
[
s2

q+(q2
⊥,+) + s2

q−(q2
⊥,−)

]
, (47)

where  (x) is the step function and

q2
⊥,± = m

h̄

(
ω − εB

h̄

)
−

(
k2
R + q2

x + qxkR ± m

h̄2

√
h2 + λ2q2

x

)
.

(48)

It is understood that we will use q = (qx,q⊥,+) in the
calculation of sq+ and q = (qx,q⊥,−) in sq−.

We may immediately realize from the above expression
that the momentum-resolved Franck-Condon factor is an
asymmetric function of kx , due to the coexistence of spin-
singlet and spin-triplet wave functions in the initial two-body
bound state. Moreover, the contribution from two final states
or two branches should manifest themselves in the different
frequency domain in rf spectra. As we shall see below, these
features give us clear signals of anisotropic bound molecules
formed by spin-orbit coupling. On the other hand, from
Eq. (47), it is readily seen that once the momentum-resolved
rf spectroscopy is measured with high resolution, it is possible
to determine precisely s2

q+ and s2
q− and then reconstruct the

two-body wave function of spin-orbit bound molecules.

E. Numerical results and discussions

For equal Rashba and Dresselhaus spin-orbit coupling, the
bound molecular state exists only on the BEC side of Feshbach
resonances with a positive s-wave scattering length, as > 0
[24]. Thus, it is convenient to take the characteristic binding
energy EB = h̄2/(ma2

s ) as the unit for energy and frequency.
For the wave vector, we use kR = mλ/h̄2 as the unit. The
strength of spin-orbit coupling may be measured by the ratio

Eλ

EB

=
[

h̄2

mλas

]−2

, (49)

where we have defined the characteristic spin-orbit energy
Eλ ≡ mλ2/h̄2 = h̄2k2

R/m. Note that, the spin-orbit coupling
is also controlled by the effective Zeeman field h = 	R/2.

FIG. 1. (Color online) Franck-Condon factor of weakly bound
molecules formed by equal Rashba and Dresselhaus spin-orbit
coupling, in units of E−1

B . Here we take h = Eλ/2 or 	R = h̄2k2
R/m

and set Eλ/EB = 0.5, 1, and 2. The result without spin-orbit coupling
is plotted by the thin dashed line. The inset shows the different
contribution from the two final states at Eλ/EB = 1. The one with a
remaining atom in the lower (upper) helicity branch is plotted by the
dashed (dot-dashed) line.

In particular, in the limit of zero Zeeman field 	R = 0,
there is no spin-orbit coupling term as shown in the original
Hamiltonian equation (3), although the characteristic spin-
orbit energy Eλ �= 0. Using kR and EB as the units for
wave vector and energy, we can write a set of dimensionless
equations for the binding energy εB = −E0, normalization
factor C, Franck-Condon factor F (ω), and the momentum-
resolved Franck-Condon factor F (ω,kx). We then solve them
for given parameters Eλ/EB and h/Eλ. In accord with the
normalization condition

∫ +∞
−∞ F (ω) = 1, the units for F (ω)

and F (kx,ω) are taken to be 1/EB and 1/(EBkR), respectively.
Figure 1 displays the Franck-Condon factor as a function

of the rf frequency at h/Eλ = 0.5 and at several ratios
of Eλ/EB as indicated. For comparison, we show also
the rf lineshape without spin-orbit coupling [33], F (ω) =
(2/π )

√
ω − EB/ω2, by the thin dashed line. In the presence of

spin-orbit coupling, the existence of two possible final states
is clearly revealed by the two peaks in the rf spectra. This is
highlighted in the inset for Eλ/EB = 1, where the contribution
from the two possible final states is plotted separately. The
main rf response is from the final state with the remaining atom
staying in the lower helicity branch, i.e., the second term in the
Franck-Condon factor equation (44). The two peak positions
may be roughly estimated from Eq. (48) for the threshold
frequency ωc± of two branches,

h̄ωc± = εB +
[

h̄2
(
k2
R + q2

x + qxkR

)
m

±
√

h2 + λ2q2
x

]
min

.

(50)

With increasing spin-orbit coupling, the low-frequency peak
becomes more and more pronounced and shifts slightly
towards lower energy. In contrast, the high-frequency peak
has a rapid blueshift.
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FIG. 2. (Color online) Linear contour plot of momentum-
resolved Franck-Condon factor, in units of (EBkR)−1. Here we take
h = Eλ/2 and consider Eλ/EB = 0.1, 0.5, 1, and 2.

Figure 2 presents the corresponding momentum-resolved
Franck-Condon factor. We find a strong asymmetric distri-
bution as a function of the momentum kx . In particular, the
contribution from two final states are well separated in different
frequency domains and therefore should be easily observed
experimentally. The asymmetric distribution of F (kx,ω) is
mostly evident in energy distribution curve, as shown in
Fig. 3, where we plot F (kx,ω) as a function of kx at
several given frequencies ω. In the experiment, each of these
energy distribution curves can be obtained by a single-shot
measurement.

We finally discuss the effect of the effective Zeeman field
h = 	R/2. Figure 4 shows how the line shape of Franck-
Condon factor evolves as a function of the Zeeman field
at Eλ/EB = 1. In general, the larger the Zeeman field, the
stronger the spin-orbit coupling. Therefore, the same as in

FIG. 3. (Color online) Energy distribution curve of the
momentum-resolved Franck-Condon factor, in units of (EBkR)−1.
We consider several values of the rf frequency ω as indicated, under
given parameters h = Eλ/2 and Eλ = EB .

FIG. 4. (Color online) Zeeman-field dependence of the Franck-
Condon factor at Eλ = EB . Here we vary the effective Zeeman fields
h/Eλ = 0.4, 0.6, 0.8, and 1.0. The inset shows the momentum-
resolved Franck-Condon factor at h = Eλ.

Fig. 1, the increase in Zeeman field leads to a pronounced
peak at about the binding energy. There is a redshift in the
peak position as the binding energy becomes smaller as the
Zeeman field increases. As anticipated, the larger the Zeeman
field, the more asymmetric F (kx,ω) becomes. In the inset, we
show as an example the contour plot of F (kx,ω) at h/Eλ = 1.

IV. RASHBA SPIN-ORBIT COUPLING

We now turn to the case with pure Rashba spin-orbit cou-
pling λ(kyσx − kxσy), which may be realized experimentally
in the near future. The single-particle Hamiltonian may be
written as [23]

H0 =
∫

dr[ψ†
↑ (r) ,ψ

†
↓ (r)]S

[
ψ↑ (r)

ψ↓ (r)

]
, (51)

where the matrix

S =
[

h̄2
(
k2
R + k2

)
/ (2m) iλ

(
kx − iky

)
−iλ(kx + iky) h̄2

(
k2
R + k2

)
/ (2m)

]
. (52)

Here λ is the coupling strength of Rashba spin-orbit coupling
kR ≡ mλ/h̄2, and we have added a constant term h̄2k2

R/(2m)
to make the minimum single-particle energy zero [24], i.e.,
Emin = 0.

A. Single-particle solution

We diagonalize the matrix S to obtain two helicity eigen-
values [23],

Ek± = h̄2
(
k2
R + k2

)
2m

±λk⊥, (53)

where k⊥ ≡
√

k2
x + k2

y and “±” stands for the two helicity
branches. For later reference, the field operators in the original
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spin basis and in the helicity basis are related by

c
†
k↑ = 1√

2
(c†k+ + ieiϕkc

†
k−), (54)

c
†
k↓ = 1√

2
(ie−iϕkc

†
k+ + c

†
k−). (55)

Here ϕk ≡ arg(kx,ky) is the azimuthal angle of the wave vector
k⊥ in the x-y plane.

B. The initial two-particle bound state |�2B〉
In the case of Rashba spin-orbit coupling, the two-

body wave function can still be written in the same form
as in the previous case, i.e., Eq. (22), as shown by Yu
and Zhai [22]. The two-body Schrödinger equation leads
to [22]

Akψ↑↓(k) = +U0

2

∑
k′

[ψ↑↓(k′) − ψ↓↑(k′)] − λ(ky − ikx)ψ↑↑(k) + λ(ky + ikx)ψ↓↓(k), (56)

Akψ↓↑(k) = −U0

2

∑
k′

[ψ↑↓(k′) − ψ↓↑(k′)] + λ(ky − ikx)ψ↑↑(k) − λ(ky + ikx)ψ↓↓(k), (57)

Akψ↑↑(k) = −λ(ky + ikx)ψ↑↓(k) + λ(ky + ikx)ψ↓↑(k), (58)

Akψ↓↓(k) = +λ(ky − ikx)ψ↑↓(k) − λ(ky − ikx)ψ↓↑(k), (59)

where Ak ≡ E0 − (h̄2k2
R/m + h̄2k2/m) < 0. It is easy to show

that ψa (k) = 0 and[
Ak − 4λ2k2

⊥
Ak

]
ψs (k) = U0

∑
k′

ψs(k′). (60)

Thus, we obtain the (un-normalized) wave function

ψs (k) = 1

2

[
1

E0 − 2Ek+
+ 1

E0 − 2Ek−

]
, (61)

and the equation for the energy E0,

m

4πh̄2as

=
∑

k

[
1/2

E0 − 2Ek+
+ 1/2

E0 − 2Ek−
+ m

h̄2k2

]
. (62)

The spin-triplet wave functions ψ↑↑ (k) and ψ↓↓ (k) are
given by

ψ↑↑ (k) =
[
−ie−iϕk

√
2λk⊥

E0 − 2εk

]
ψs (k) , (63)

ψ↓↓ (k) =
[
−ie+iϕk

√
2λk⊥

E0 − 2εk

]
ψs (k) , (64)

where εk ≡ h̄2k2/(2m). The normalization factor for the two-
body wave function is therefore

C =
∑

k

|ψs (k)|2
[

1 + 4λ2k2
⊥

(E0 − 2εk)2

]
. (65)

C. The final two-particle state |� f 〉
To obtain the final state, we consider again Vrf |�2B〉.

In the present case, we assume that the rf Hamiltonian is

given by

Vrf = V0

∑
q

(c†q3cq↓ + c
†
q↓cq3). (66)

Following the same procedure as in the case of equal Rashba
and Dresselhaus coupling, it is straightforward to show
that

Vrf |�2B〉

= −
√

1

CV0

∑
q

c
†
−q3[ψs (q) c

†
q↑ +

√
2ψ↓↓ (q) c

†
q↓] |vac〉 .

(67)

Using Eqs. (54) and (55) to rewrite c
†
q↑ and c

†
q↓ in terms of c

†
q+

and c
†
q−, we obtain

Vrf |�2B〉

= −
√

1

2CV0

∑
q

[
c
†
−q3c

†
q+

E0 − 2Eq+
+ ieiϕqc

†
−q3c

†
q−

E0 − 2Eq−

]
|vac〉 .

(68)

Therefore, we have again two final states, differing in
the helicity branch that the remaining atom stays. The
remaining atom stays in the upper branch with probability
(2C)−1(E0 − 2Eq+)−2, and in the lower branch with probabil-
ity (2C)−1(E0 − 2Eq−)−2.

D. Momentum-resolved rf spectroscopy

Using Fermi’s golden rule, we have immediately the
Franck-Condon factor

F (ω) = 1

C
∑

k

[
δ (ω − Ek+/h̄)

2 (εB + 2Ek+)2 + δ (ω − Ek−/h̄)

2 (εB + 2Ek−)2

]
, (69)
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where

Ek± ≡ εB + h̄2k2
R

2m
+ h̄2k2

m
± λk⊥. (70)

For Rashba spin-orbit coupling, it is reasonable to de-
fine the following momentum-resolved Franck-Condon

factor:

F (k⊥,ω) = 1

C
∑
kz

[
δ (ω − Ek+/h̄)

2 (εB + 2Ek+)2 + δ (ω − Ek−/h̄)

2 (εB + 2Ek−)2

]
,

(71)

where we have summed over the momentum kz. Integrating
over kz with the help of the two Dirac δ functions, we find that

F (k⊥,ω) = m

16π3h̄C

[


(
k2
z+

)
(
h̄ω + h̄2k2

R

/
2m + λk⊥

)2
kz+

+ 
(
k2
z−

)
(
h̄ω + h̄2k2

R

/
2m − λk⊥

)2
kz−

]
, (72)

where

k2
z± = m

h̄

(
ω − εB

h̄

)
−

(
k2
R

2
+ k2

⊥ ± kRk⊥

)
. (73)

It is easy to see that the threshold frequencies for the two final
states are given by

h̄ωc+ = εB + h̄2k2
R

2m
, (74)

h̄ωc− = εB + h̄2k2
R

4m
, (75)

which differ by an amount of h̄2k2
R/(4m) = Eλ/4. Near ωc−,

we find approximately that F (ω) ∝ (ω − ωc−)/ω2. Thus,
the line shape near the threshold is similar to that of a two-
dimensional (2D) Fermi gas [36]. This similarity is related to
the fact that at low energy a three-dimensional (3D) Fermi gas
with Rashba spin-orbit coupling has exactly the same density
of states as a 2D Fermi gas [14].

FIG. 5. (Color online) Franck-Condon factor of weakly bound
molecules formed by Rashba spin-orbit coupling, in units of E−1

λ .
Here we take h̄2/(mλas) = −1 (dashed line), 0 (solid line), and 1
(dot-dashed line). In the deep BCS limit, h̄2/(mλas) → −∞, the
Franck-Condon factor peaks sharply at h̄ω � Eλ/2 and becomes a
δ-like distribution.

E. Numerical results and discussions

For the pure Rashba spin-orbit coupling, the molecular
bound state exists for arbitrary s-wave scattering length as

[19,22,23]. We shall take kR = mλ/h̄2 and Eλ ≡ mλ2/h̄2

as the units for wave vector and energy, respectively. With

FIG. 6. (Color online) Contour plot of momentum-resolved
Franck-Condon factor of weakly bound molecules formed by Rashba
spin-orbit coupling, in units of (EλkR)−1. The intensity increases from
blue to red in a logarithmic scale. We consider h̄2/(mλas) = −1 (a),
0 (b), and 1 (c).
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FIG. 7. (Color online) Momentum-resolved Franck-Condon fac-
tor of Rashba molecules at h̄2/(mλas) = 0, shown in the form of
energy distribution curves at several rf frequencies as indicated.

these units, the dimensionless interaction strength is given by
h̄2/(mλas). The spin-orbit effect should be mostly significant
on the BCS side with h̄2/(mλas) < 0, where the bound state
cannot exist without spin-orbit coupling.

Figure 5 shows the Franck-Condon factor at three different
interaction strengths h̄2/(mλas) = −1, 0, and +1. The strong
response in the BCS regime (as < 0) or in the unitary limit
(as → ±∞) is an unambiguous signal of the existence of
Rashba molecules. In particular, the rf line shape in the BCS
regime shows a sharp peak at about h̄ω � Eλ/2 and decays
very fast at high frequency.

In Fig. 6, we present the corresponding momentum-
resolved Franck-Condon factor F (k⊥,ω), in the form of
contour plots. We can see clearly the different response from
the two final states. The momentum-resolved rf spectroscopy
is particularly useful to identify the contribution from the
final state that has a remaining atom in the upper branch,
which, being integrated over k⊥, becomes too weak to be
resolved in the total rf spectroscopy. Finally, we report in
Fig. 7 energy distribution curves of F (k⊥,ω) in the unitary
limit h̄2/(mλas) = 0. We find two sharp peaks in each energy
distribution curve, arising from the two final states. When mea-
sured experimentally, these sharp peaks would become much
broader owing to the finite experimental energy resolution.

V. CONCLUSIONS

In conclusion, we have investigated theoretically the radio-
frequency spectroscopy of weakly bound molecules in a
spin-orbit-coupled atomic Fermi gas. The wave function of
these molecules is greatly affected by spin-orbit coupling and
has both spin-singlet and spin-triplet components. As a result,
the line shape of the total radio-frequency spectroscopy is
qualitatively different from that of the conventional molecules
at the BEC-BCS crossover without spin-orbit coupling. In
addition, the momentum-resolved radio frequency becomes
highly asymmetric as a function of the momentum. These
features are easily observable in current experiments with
spin-orbit-coupled Fermi gases of 40K atoms and 6Li atoms. On
the other hand, from the high-resolution momentum-resolved
radio frequency, we may reconstruct the two-body wave
function of the bound molecules.

At finite temperatures, the contribution from atoms to
the radio-frequency spectroscopy becomes important. Thus,
we may have to treat atoms and weakly bound molecules
on an equal footing. A more in-depth investigation of
spectroscopy requires complicated many-body calculations
beyond our simple two-body picture pursued in the present
work [39,40]. At the Fermi degenerate temperature TF , which
is the typical temperature scale for the recently realized
spin-orbit atomic Fermi gas [4,5], we may use a quan-
tum virial expansion method to obtain reliable theoretical
predictions [41].
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